The Hidden Order of Intelligent Systems: Complexity, Autonomy, and the Future of AI
As artificial intelligence systems grow more autonomous and integrated into our world, they also become harder to predict, control, and fully understand. This talk explores how complexity theory can help us make sense of these challenges, by revealing the hidden patterns that drive collective behavior, adaptation, and resilience in intelligent systems. From emergent coordination among autonomous agents to nonlinear feedback in real-world deployments, we’ll explore how order arises from chaos, and what that means for the next generation of AI. Along the way, we’ll draw connections to neuroscience, agentic AI, and distributed systems that offer fresh insights into designing multi-faceted AI systems.