Register for the event
Virtual
Americas
Meetups
Agriculture
Visual AI in Agriculture - October 16, 2025
Oct 16, 2025
9 AM Pacific
Online. Register for the Zoom!
Speakers
About this event
Join us for a series of virtual events to hear talks from experts on the latest developments at the intersection of Visual AI in Agriculture.
Schedule
Field-Ready Vision: Building the Agricultural Image Repository (AgIR) for Sustainable Farming
Data—not models—is the bottleneck in agricultural computer vision. This talk shares how Precision Sustainable Agriculture (PSA) is tackling that gap with the Agricultural Image Repository (AgIR): a cloud bank of high-resolution, labeled images spanning weeds (40+ species), cover crops, and cash crops across regions, seasons, and sensors.

We’ll show how AgIR blends two complementary streams:
(1) semi-field, high-throughput data captured by BenchBot, our open-source, modular gantry that autonomously images plants and feeds a semi-automated annotation pipeline;
(2) true field images that capture real environmental variability. Together, they cut labeling cost, accelerate pretraining, and improve robustness in production.

On top of AgIR, we’ve built a data-centric training stack: hierarchical augmentation groups, batch mixers, a stand-alone visualizer for rapid iteration, and a reproducible PyTorch Lightning pipeline. We’ll cover practical lessons from segmentation (crop/weed/residue/water/soil), handling domain shift between semi-field and field scenes, and designing metadata schemas that actually pay off at model time.
Beyond Manual Measurements: How AI is Accelerating Plant Breeding
Traditional plant breeding relies on manual phenotypic measurements that are time-intensive, subjective, and create bottlenecks in variety development. This presentation demonstrates how computer vision and artificial intelligence are revolutionizing plant selection processes by automating trait extraction from simple photographs. Our cloud-based platform transforms images captured with smartphones, drones, or laboratory cameras into instant, quantitative phenotypic data including fruit count, size measurements, and weight estimations.
The system integrates phenotypic data with genotypic, pedigree, and environmental information in a unified database, enabling real-time analytics and decision support through intuitive dashboards. Unlike expensive hardware-dependent solutions, our software-focused approach works with existing camera equipment and standard breeding workflows, making advanced phenotyping accessible to organizations of all sizes.
AI-assisted sweetpotato yield estimation pipelines using optical sensor data
In this presentation, we will introduce the sensor systems and AI-powered analysis algorithms used in high-throughput sweetpotato post-harvest packing pipelines (developed by the Optical Sensing Lab at NC State University). By collecting image data from sweetpotato fields and packing lines respectively, we aim to quantitatively optimize the grading and yield estimation process, and the planning on storage and inventory-order matching. We built two customized sensor devices to collect data respectively from the top bins when receiving sweetpotatoes from farmers, and eliminator table before grading and packing process. We also developed a compact instance segmentation pipeline that can run on smart phones for rapid yield estimation in-field with resource limitations. To minimize data privacy concerns and Internet connectivity issues, we try to keep all the analysis pipelines on the edge, which results in a design tradeoff between resource availability and environmental constraints. We will also introduce sensor building with these considerations. The analysis results and real time production information are then integrated into an interactive online dashboard, where stakeholders can leverage to help with inventory-order management and making operational decisions.
An End-to-End AgTech Use Case in FiftyOne
The agricultural sector is increasingly turning to computer vision to tackle challenges in crop monitoring, pest detection, and yield optimization. Yet, developing robust models in this space often requires careful data exploration, curation, and evaluation—steps that are just as critical as model training itself.

In this talk, we will walk through an end-to-end AgTech use case using FiftyOne, an open-source tool for dataset visualization, curation, and model evaluation. Starting with a pest detection dataset, we will explore the samples and annotations to understand dataset quality and potential pitfalls. From there, we will curate the dataset by filtering, tagging, and identifying edge cases that could impact downstream performance. Next, we’ll train a computer vision model to detect different pest species and demonstrate how FiftyOne can be used to rigorously evaluate the results. Along the way, we’ll highlight how dataset-centric workflows can accelerate experimentation, improve model reliability, and surface actionable insights specific to agricultural applications.

By the end of the session, attendees will gain a practical understanding of how to:

- Explore and diagnose real-world agricultural datasets
- Curate training data for improved performance
- Train and evaluate pest detection models
- Use FiftyOne to close the loop between data and models

This talk will be valuable for anyone working at the intersection of agriculture and computer vision, whether you’re building production models or just beginning to explore AgTech use cases.