The World of World Models: How the New Generation of AI Is Reshaping Robotics and Autonomous Vehicles
World Models are emerging as the defining paradigm for the next decade of robotics and autonomous systems. Instead of depending on handcrafted perception stacks or rigid planning pipelines, modern world models learn a unified representation of an environment—geometry, dynamics, semantics, and agent behavior—and use that understanding to predict, plan, and act. This talk will break down why the field is shifting toward these holistic models, what new capabilities they unlock, and how they are already transforming AV and robotics research.
We then connect these advances to the Physical AI Workbench, a practical foundation for teams who want to build, validate, and iterate on world-model-driven pipelines. The Workbench standardizes data quality, reconstruction, and enrichment workflows so that teams can trust their sensor data, generate high-fidelity world representations, and feed consistent inputs into next-generation predictive and generative models. Together, world models and the Physical AI Workbench represent a new, more scalable path forward—one where robots and AVs can learn, simulate, and reason about the world through shared, high-quality physical context.