Anomaly detection is transforming manufacturing and surveillance, but what about agriculture? Can AI actually detect plant diseases and pest damage early enough to make a difference?
This talk demonstrates how anomaly detection identifies and localizes crop problems using coffee leaf health as our primary example. We'll start with the foundational theory, then examine how these models detect rust and miner damage in leaf imagery.
The session includes a comprehensive hands-on workflow using the open-source FiftyOne computer vision toolkit, covering dataset curation, patch extraction, model training, and result visualization. You'll gain both theoretical understanding of anomaly detection in computer vision and practical experience applying these techniques to agricultural challenges and other domains.