Your Data Is Lying to You: How Semantic Search Helps You Find the Truth in Visual Datasets
High-performing models start with high-quality data—but finding noisy, mislabeled, or edge-case samples across massive datasets remains a significant bottleneck. In this session, we’ll explore a scalable approach to curating and refining large-scale visual datasets using semantic search powered by transformer-based embeddings. By leveraging similarity search and multimodal representation learning, you’ll learn to surface hidden patterns, detect inconsistencies, and uncover edge cases. We’ll also discuss how these techniques can be integrated into data lakes and large-scale pipelines to streamline model debugging, dataset optimization, and the development of more robust foundation models in computer vision. Join us to discover how semantic search reshapes how we build and refine AI systems.