Hear talks from experts on cutting-edge topics at the intersection of AI, ML, computer vision and healthcare.
Schedule
MedVAE: Efficient Automated Interpretation of Medical Images with Large-Scale Generalizable Autoencoders
We present MedVAE, a family of six generalizable 2D and 3D variational autoencoders trained on over one million images from 19 open-source medical imaging datasets using a novel two-stage training strategy. MedVAE downsizes high-dimensional medical images into compact latent representations, reducing storage by up to 512× and accelerating downstream tasks by up to 70× while preserving clinically relevant features. We demonstrate across 20 evaluation tasks that these latent representations can replace high-resolution images in computer-aided diagnosis pipelines without compromising performance. MedVAE is open-source with a streamlined finetuning pipeline and inference engine, enabling scalable model development in resource-constrained medical imaging settings.
Leveraging Foundation Models for Pathology: Progress and Pitfalls
How do you train ML models on pathology slides that are thousands of times larger than standard images? Foundation models offer a breakthrough approach to these gigapixel-scale challenges. This talk explores how self-supervised foundation models trained on broad histopathology datasets are transforming computational pathology. We'll examine their progress in handling weakly-supervised learning, managing tissue preparation variations, and enabling rapid prototyping with minimal labeled examples. However, significant challenges remain: increasing computational demands, the potential for bias, and questions about generalizability across diverse populations. This talk will offer a balanced perspective to help separate foundation model hype from genuine clinical value.
LesionLocator: Zero-Shot Universal Tumor Segmentation and Tracking in 3D Whole-Body Imaging
Recent advances in promptable segmentation have transformed medical imaging workflows, yet most existing models are constrained to static 2D or 3D applications. This talk presents LesionLocator, the first end-to-end framework for universal 4D lesion segmentation and tracking using dense spatial prompts. The system enables zero-shot tumor analysis across whole-body 3D scans and multiple timepoints, propagating a single user prompt through longitudinal follow-ups to segment and track lesion progression. Trained on over 23,000 annotated scans and supplemented with a synthetic time-series dataset, LesionLocator achieves human-level performance in segmentation and outperforms state-of-the-art baselines in longitudinal tracking tasks. The presentation also highlights advances in 3D interactive segmentation, including our open-set tool nnInteractive, showing how spatial prompting can scale from user-guided interaction to clinical-grade automation.
LLMs for Smarter Diagnosis: Unlocking the Future of AI in Healthcare
Large Language Models are rapidly transforming the healthcare landscape. In this talk, I will explore how LLMs like GPT-4 and DeepSeek-R1 are being used to support disease diagnosis, predict chronic conditions, and assist medical professionals without relying on sensitive patient data. Drawing from my published research and real-world applications, I’ll discuss the technical challenges, ethical considerations, and the future potential of integrating LLMs in clinical settings. The talk will offer valuable insights for developers, researchers, and healthcare innovators interested in applying AI responsibly and effectively.
Join us for several virtual events focused on the latest research, datasets and models at the intersection of visual AI and healthcare.