
1

Vishal Rajput
Speech Recognition

AI-Vision Engineer @SkyeBase | AI Writer | AI Researcher | Masters AI, KU Leuven

Speech is dress of thoughts. Good looks
can attract people towards you, but speech
is what wins their heart.

2

Agenda
❑ What is speech recognition

❑ Why do we need speech recognition

❑ What are the main problems

❑ Understand the basics: Traditional ASR

❑ State of Speech recognition

❑ Where does OpenAI comes in

❑ What’s next

3

8/05/20XX 4

Background
All of us are always communicating, and as we all know that our

world is becoming more and more digital and advance, why not

also talk to the machines that have become integral part of our

society.

5

Why do we need such systems,
how can they help us?
Firstly, because we can make such systems, so why not.

Secondly, to make our lives little more easier and lazier
at the same time.

Thirdly, critical places where we are not in positions to
use our hands to operate stuff.

Lastly, to make our work little faster.

CONFERENCE PRESENTATION 6

Well, I can survive without a
voice operated home theatre,
but I would like to have one for
my GPS, don’t want to look at
my screen when I’m driving.

CONFERENCE PRESENTATION 7

8/05/20XX 8

Problems
Low signal-noise ratio

Speaker variability (accents)

Natural Conversational Speech (ahh, hunn, yaaa)

P
ro

bl
em

s

Parts of Speech Recognition

Speech Transcription

Word Spotting/ trigger word

Speaker identification/verification

9

10

It was trained in a reverse way, first we made text-to-audio
system and then used it to make speech recognition systems.

Traditional ASR pipeline

11

Traditional ASR pipeline

12

Advantages:

Can be tweaked for new
pronunciation.

But still quite complex for
new accent.

8/05/20XX 13

14

15

Introducing Deep learning

16

first in acoustic model

17

18

How do we handle audio data

8/05/20XX 19

20

21

We use Mel Spectrogram
not spectrogram

8/05/20XX 22

Can you identify the problem
this?

Alignment

CTC (Connectionist Temporal
Classification)

In CTC, the output of the neural network

is a sequence of probability distributions

over all possible labels, at each time

step. CTC then evaluates the probability

of the target transcript given the

network's output sequence by

considering all possible alignments

between the network's predictions and

the target sequence. The final loss is the

negative log-likelihood of the target

transcript, given the network's output.

8/05/20XX 23

8/05/20XX 25

8/05/20XX 26

8/05/20XX CONFERENCE PRESENTATION 27

LAS model

Attention

Let’s appreciate other papers before
going into OpenAI’s whisper

28

29

WAV2VEC: UNSUPERVISED PRE-TRAINING FOR SPEECH
RECOGNITION

Wav2vec mainly to create a better representation of audio data. It uses contrastive loss to do
that. (Unsupervised)

Predicts future samples from the current sample.

They first encode raw speech samples into a representation of features at a lower temporal
frequency. Then, they implicitly model a density ratio and try to predict the future based on
this "latent space.“

The model takes raw audio signals as input and then applies two networks. The encoder
network embeds the audio signal in a latent space, and the context network combines
multiple time steps of the encoder to obtain contextualized representations.

30

VQ-WAV2VEC: SELF-SUPERVISED LEARNING SPEECH
REPRESENTATION

• VqWav2vec aims at learning discrete representation of speech via context prediction task.

• It uses Wav2vec first and then uses BERT for context prediction.

31

Wav2vec2: A Framework for Self-Supervised Learning of Speech
Representations

• Wav2vec2 is a framework for self-supervised learning of representations from raw audio
data

• Encodes speech audio via a multi-layer convolutional neural network and then masks
spans of the resulting latent speech representations, similar to masked language
modelling

• The latent representations are fed to a Transformer network to build contextualized
representations and the model is trained via a contrastive task where the true latent is to
be distinguished from distractors.

• They learn discrete speech units to represent the latent representations in the contrastive
task.

• After pre-training on unlabeled speech, the model is fine-tuned on labeled data with a
Connectionist Temporal Classification (CTC) loss to be used for downstream speech
recognition tasks.

32

XLSR-wav2vec: UNSUPERVISED CROSS-LINGUAL
REPRESENTATION LEARNING FOR SPEECH RECOGNITION

• XLSR proposes a framework to learn cross-lingual speech representation by pre-training
a single model form the raw waveform.

• This model is based on wav2vec2.

• The resulting model is fine-tuned on labeled data, and experiments show that
cross-lingual pre-training significantly outperforms monolingual pre-training.

• The latent representations are fed to a Transformer network to build contextualized
representations and the model is trained via a contrastive task where the true latent is to
be distinguished from distractors.

OpenAI’s Whisper (Finally!!! The wait is over)

33

Data Preparation

8/05/20XX 34

35

There were two main pathways namely supervised and unsupervised in speech recognition. In
the unsupervised setting (1000000 hours of audio data is available).

Pre-trained audio encoders learn high-quality representations of speech, but because they are
purely unsupervised they lack an equivalently performant decoder mapping those
representations to usable outputs, necessitating a finetuning stage in order to actually perform
a task such as speech recognition.

In supervised, there is still only a moderate amount of this data available (5000 hours).

OpenAI used weak supervision to scale the data from 5000 hours to 680000 hours (scaled by a
factor of 130).

Their initial inspection showed a large number of subpar transcripts in the raw dataset. To
address this, they developed several automated filtering methods to improve transcript quality.
They also developed many heuristics to detect and remove machine-generated transcripts
from the training dataset. For ex., an all-uppercase or all-lowercase transcript is very unlikely
to be human generated.

They also performed manual inspection of these data sources sorting.

36

37

The flow of model prediction
❑ First, the model predicts the language being spoken which is represented by a unique token for each

language in our training set (99 total).
❑ In the case where there is no speech in an audio segment, the model is trained to predict

a <|nospeech|> token indicating this.
❑ The next token specifies the task (either transcription or translation) with

an <|transcribe|> or <|translate|> token.
❑ After this, the model specifies whether to predict timestamps or not by including

a <|notimestamps|> token for that case.
❑ At this point, the task and desired format are fully specified, and the output begins.

Other Details

38

Earlier in development model had a tendency to transcribe plausibly but almost always
incorrect guesses for the names of speakers. Later, the model is fine-tuned briefly on the subset
of transcripts that do not include speaker annotations which removes this behaviour.

For timestamp prediction, the model predicts time relative to the current audio segment,
quantizing all times to the nearest 20 milliseconds which matches the native time resolution of
Whisper models.

Speech recognition research typically evaluates and compares systems based on the word error
rate (WER) metric. However, WER, which is based on string edit distance, penalizes all
differences between the model s̓ output and the reference transcript including innocuous
differences in transcript style. Whisper opts to address this problem with extensive
standardization of text before the WER calculation to minimize penalization of non-semantic
differences.

8/05/20XX 39

#Transcription can also be performed within Python:
import whisper

model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])

#Example usage of whisper.detect_language() and
whisper.decode() which provide lower-level access
to the model.
model = whisper.load_model("base")

load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("audio.mp3")
audio = whisper.pad_or_trim(audio)

make log-Mel spectrogram and move to the same
device as the model
mel =
whisper.log_mel_spectrogram(audio).to(model.devic
e)

detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs,
key=probs.get)}")

decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)

print the recognized text
print(result.text)

What’s next

8/05/20XX CONFERENCE PRESENTATION 40

41

Increase Training Data For Lower-Resource Languages

Improved decoding strategies: Long-form transcription

Studying fine-tuning

Studying the impact of Language Models on Robustness: It might be language model
entirely

What’s next

Whisper in full glory

Thank You!!!

8/05/20XX 43

https://www.linkedin.com/in/vishal-rajput-999164122/

https://medium.com/aiguys

https://www.linkedin.com/in/vishal-rajput-999164122/
https://medium.com/aiguys

