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Speech is dress of thoughts. Good looks 
can attract people towards you, but speech 
is what wins their heart. 
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Agenda
❑ What is speech recognition

❑ Why do we need speech recognition

❑ What are the main problems

❑ Understand the basics: Traditional ASR

❑ State of Speech recognition 

❑ Where does OpenAI comes in

❑ What’s next
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Background
All of us are always communicating, and as we all know that our 

world is becoming more and more digital and advance, why not 

also talk to the machines that have become integral part of our 

society. 
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Why do we need such systems, 
how can they help us?
Firstly, because we can make such systems, so why not.

Secondly, to make our lives little more easier and lazier 
at the same time.

Thirdly, critical places where we are not in positions to 
use our hands to operate stuff.

Lastly, to make our work little faster. 
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Well, I can survive without a 
voice operated home theatre, 
but I would like to have one for 
my GPS, don’t want to look at 
my screen when I’m driving.
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Problems
Low signal-noise ratio

Speaker variability (accents)

Natural Conversational Speech (ahh, hunn, yaaa)
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Parts of Speech Recognition

Speech Transcription

Word Spotting/ trigger word

Speaker identification/verification
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It was trained in a reverse way, first we made text-to-audio 
system and then used it to make speech recognition systems.



Traditional ASR pipeline
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Traditional ASR pipeline
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Advantages:

Can be tweaked for new 
pronunciation.

But still quite complex for 
new accent.
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Introducing Deep learning
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first in acoustic model
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How do we handle audio data
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We use Mel Spectrogram 
not spectrogram
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Can you identify the problem 
this?

Alignment



CTC (Connectionist Temporal 
Classification) 

In CTC, the output of the neural network 

is a sequence of probability distributions 

over all possible labels, at each time 

step. CTC then evaluates the probability 

of the target transcript given the 

network's output sequence by 

considering all possible alignments 

between the network's predictions and 

the target sequence. The final loss is the 

negative log-likelihood of the target 

transcript, given the network's output.
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LAS model

Attention



Let’s appreciate other papers before 
going into OpenAI’s whisper
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WAV2VEC: UNSUPERVISED PRE-TRAINING FOR SPEECH 
RECOGNITION

Wav2vec mainly to create a better representation of audio data. It uses contrastive loss to do 
that. (Unsupervised)

Predicts future samples from the current sample.

They first encode raw speech samples into a representation of features at a lower temporal 
frequency. Then, they implicitly model a density ratio and try to predict the future based on 
this "latent space.“

The model takes raw audio signals as input and then applies two networks. The encoder 
network embeds the audio signal in a latent space, and the context network combines 
multiple time steps of the encoder to obtain contextualized representations.
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VQ-WAV2VEC: SELF-SUPERVISED LEARNING SPEECH 
REPRESENTATION

• VqWav2vec aims at learning discrete representation of speech via context prediction task.

• It uses Wav2vec first and then uses BERT for context prediction.
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Wav2vec2: A Framework for Self-Supervised Learning of Speech 
Representations

• Wav2vec2 is a framework for self-supervised learning of representations from raw audio 
data

• Encodes speech audio via a multi-layer convolutional neural network and then masks 
spans of the resulting latent speech representations, similar to masked language 
modelling

• The latent representations are fed to a Transformer network to build contextualized 
representations and the model is trained via a contrastive task where the true latent is to 
be distinguished from distractors.

• They learn discrete speech units to represent the latent representations in the contrastive 
task.

•  After pre-training on unlabeled speech, the model is fine-tuned on labeled data with a 
Connectionist Temporal Classification (CTC) loss to be used for downstream speech 
recognition tasks.
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XLSR-wav2vec: UNSUPERVISED CROSS-LINGUAL 
REPRESENTATION LEARNING FOR SPEECH RECOGNITION

• XLSR proposes a framework to learn cross-lingual speech representation by pre-training 
a single model form the raw waveform.

• This model is based on wav2vec2.

• The resulting model is fine-tuned on labeled data, and experiments show that 
cross-lingual pre-training significantly outperforms monolingual pre-training.

• The latent representations are fed to a Transformer network to build contextualized 
representations and the model is trained via a contrastive task where the true latent is to 
be distinguished from distractors.



OpenAI’s Whisper (Finally!!! The wait is over) 
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Data Preparation
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There were two main pathways namely supervised and unsupervised in speech recognition. In 
the unsupervised setting (1000000 hours of audio data is available).

Pre-trained audio encoders learn high-quality representations of speech, but because they are 
purely unsupervised they lack an equivalently performant decoder mapping those 
representations to usable outputs, necessitating a finetuning stage in order to actually perform 
a task such as speech recognition.

In supervised, there is still only a moderate amount of this data available (5000 hours).

OpenAI used weak supervision to scale the data from 5000 hours to 680000 hours (scaled by a 
factor of 130). 

Their initial inspection showed a large number of subpar transcripts in the raw dataset. To 
address this, they developed several automated filtering methods to improve transcript quality. 
They also developed many heuristics to detect and remove machine-generated transcripts 
from the training dataset. For ex., an all-uppercase or all-lowercase transcript is very unlikely 
to be human generated.

They also performed manual inspection of these data sources sorting.
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The flow of model prediction
❑ First, the model predicts the language being spoken which is represented by a unique token for each 

language in our training set (99 total).
❑ In the case where there is no speech in an audio segment, the model is trained to predict 

a <|nospeech|> token indicating this.
❑ The next token specifies the task (either transcription or translation) with 

an <|transcribe|> or <|translate|> token.
❑ After this, the model specifies whether to predict timestamps or not by including 

a <|notimestamps|> token for that case.
❑ At this point, the task and desired format are fully specified, and the output begins.



Other Details 
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Earlier in development model had a tendency to transcribe plausibly but almost always 
incorrect guesses for the names of speakers. Later, the model is fine-tuned briefly on the subset 
of transcripts that do not include speaker annotations which removes this behaviour.

For timestamp prediction, the model predicts time relative to the current audio segment, 
quantizing all times to the nearest 20 milliseconds which matches the native time resolution of 
Whisper models.

Speech recognition research typically evaluates and compares systems based on the word error 
rate (WER) metric. However, WER, which is based on string edit distance, penalizes all 
differences between the model s̓ output and the reference transcript including innocuous 
differences in transcript style. Whisper opts to address this problem with extensive 
standardization of text before the WER calculation to minimize penalization of non-semantic 
differences.
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#Transcription can also be performed within Python:
import whisper

model = whisper.load_model("base")
result = model.transcribe("audio.mp3")
print(result["text"])

#Example usage of whisper.detect_language() and 
whisper.decode() which provide lower-level access 
to the model.
model = whisper.load_model("base")

# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio("audio.mp3")
audio = whisper.pad_or_trim(audio)

# make log-Mel spectrogram and move to the same 
device as the model
mel = 
whisper.log_mel_spectrogram(audio).to(model.devic
e)

# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, 
key=probs.get)}")

# decode the audio
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)

# print the recognized text
print(result.text)



What’s next
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Increase Training Data For Lower-Resource Languages

Improved decoding strategies: Long-form transcription

Studying fine-tuning 

Studying the impact of Language Models on Robustness: It might be language model 
entirely

What’s next



Whisper in full glory



Thank You!!!
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https://www.linkedin.com/in/vishal-rajput-999164122/

https://medium.com/aiguys

https://www.linkedin.com/in/vishal-rajput-999164122/
https://medium.com/aiguys

