FiftyOne TutorialsΒΆ
Welcome to FiftyOne tutorials!
Each tutorial below is a curated demonstration of how FiftyOne can help refine your datasets and turn your good models into great models.
Evaluating object detections
Aggregate statistics aren't sufficient for object detection. This tutorial shows how to use FiftyOne to perform powerful evaluation workflows on your detector.

Evaluating a classifier
Evaluation made easy. This tutorial walks through and end-to-end example of fine-tuning a classifier and understanding its failure modes using FiftyOne.

Using image embeddings
Visualize your data in new ways. This tutorial show how to use FiftyOne's powerful embeddings visualization capabilities to improve your image datasets.

Exploring image uniqueness
Your models need diverse data. This tutorial shows how FiftyOne can remove near-duplicate images and recommend unique samples for model training.

Finding classification mistakes
Better models start with better data. This tutorial shows how FiftyOne can automatically find possible label mistakes in your classification datasets.

Finding detection mistakes
How good are your ground truth objects? Use the FiftyOne Brain's mistakenness feature to find annotation errors in your object detections.

Note
Check out the fiftyone-examples repository for more examples of using FiftyOne!